Copied to
clipboard

G = C23.408C24order 128 = 27

125th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.408C24, C22.1542- 1+4, C22.2032+ 1+4, C4⋊C4.21Q8, C428C4.26C2, C2.24(D43Q8), C2.11(Q83Q8), C4.30(C42.C2), C22.91(C22×Q8), (C22×C4).830C23, (C2×C42).528C22, C23.83C23.6C2, C23.81C23.9C2, C2.C42.159C22, C23.63C23.19C2, C23.65C23.45C2, C2.17(C22.49C24), C2.32(C22.36C24), C2.45(C22.46C24), C2.53(C23.36C23), (C4×C4⋊C4).54C2, (C2×C4).44(C2×Q8), C2.13(C2×C42.C2), (C2×C4).130(C4○D4), (C2×C4⋊C4).274C22, C22.285(C2×C4○D4), SmallGroup(128,1240)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.408C24
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C23.408C24
C1C23 — C23.408C24
C1C23 — C23.408C24
C1C23 — C23.408C24

Generators and relations for C23.408C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=c, e2=b, f2=ba=ab, g2=a, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 308 in 190 conjugacy classes, 104 normal (42 characteristic)
C1, C2, C4, C4, C22, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2.C42, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×C4⋊C4, C428C4, C428C4, C23.63C23, C23.65C23, C23.81C23, C23.83C23, C23.408C24
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C42.C2, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C42.C2, C23.36C23, C22.36C24, C22.46C24, D43Q8, C22.49C24, Q83Q8, C23.408C24

Smallest permutation representation of C23.408C24
Regular action on 128 points
Generators in S128
(1 9)(2 10)(3 11)(4 12)(5 70)(6 71)(7 72)(8 69)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 127)(66 128)(67 125)(68 126)
(1 99)(2 100)(3 97)(4 98)(5 126)(6 127)(7 128)(8 125)(9 39)(10 40)(11 37)(12 38)(13 43)(14 44)(15 41)(16 42)(17 47)(18 48)(19 45)(20 46)(21 51)(22 52)(23 49)(24 50)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 63)(34 64)(35 61)(36 62)(65 71)(66 72)(67 69)(68 70)(73 103)(74 104)(75 101)(76 102)(77 107)(78 108)(79 105)(80 106)(81 111)(82 112)(83 109)(84 110)(85 115)(86 116)(87 113)(88 114)(89 119)(90 120)(91 117)(92 118)(93 123)(94 124)(95 121)(96 122)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 115 99 85)(2 56 100 26)(3 113 97 87)(4 54 98 28)(5 24 126 50)(6 81 127 111)(7 22 128 52)(8 83 125 109)(9 55 39 25)(10 116 40 86)(11 53 37 27)(12 114 38 88)(13 59 43 29)(14 120 44 90)(15 57 41 31)(16 118 42 92)(17 63 47 33)(18 124 48 94)(19 61 45 35)(20 122 46 96)(21 65 51 71)(23 67 49 69)(30 74 60 104)(32 76 58 102)(34 78 64 108)(36 80 62 106)(66 112 72 82)(68 110 70 84)(73 119 103 89)(75 117 101 91)(77 123 107 93)(79 121 105 95)
(1 47 39 77)(2 18 40 108)(3 45 37 79)(4 20 38 106)(5 120 68 30)(6 91 65 57)(7 118 66 32)(8 89 67 59)(9 107 99 17)(10 78 100 48)(11 105 97 19)(12 80 98 46)(13 111 103 21)(14 82 104 52)(15 109 101 23)(16 84 102 50)(22 44 112 74)(24 42 110 76)(25 121 115 35)(26 96 116 62)(27 123 113 33)(28 94 114 64)(29 125 119 69)(31 127 117 71)(34 54 124 88)(36 56 122 86)(41 83 75 49)(43 81 73 51)(53 93 87 63)(55 95 85 61)(58 128 92 72)(60 126 90 70)
(1 13 9 73)(2 74 10 14)(3 15 11 75)(4 76 12 16)(5 36 70 96)(6 93 71 33)(7 34 72 94)(8 95 69 35)(17 81 77 21)(18 22 78 82)(19 83 79 23)(20 24 80 84)(25 89 85 29)(26 30 86 90)(27 91 87 31)(28 32 88 92)(37 101 97 41)(38 42 98 102)(39 103 99 43)(40 44 100 104)(45 109 105 49)(46 50 106 110)(47 111 107 51)(48 52 108 112)(53 117 113 57)(54 58 114 118)(55 119 115 59)(56 60 116 120)(61 125 121 67)(62 68 122 126)(63 127 123 65)(64 66 124 128)

G:=sub<Sym(128)| (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,115,99,85)(2,56,100,26)(3,113,97,87)(4,54,98,28)(5,24,126,50)(6,81,127,111)(7,22,128,52)(8,83,125,109)(9,55,39,25)(10,116,40,86)(11,53,37,27)(12,114,38,88)(13,59,43,29)(14,120,44,90)(15,57,41,31)(16,118,42,92)(17,63,47,33)(18,124,48,94)(19,61,45,35)(20,122,46,96)(21,65,51,71)(23,67,49,69)(30,74,60,104)(32,76,58,102)(34,78,64,108)(36,80,62,106)(66,112,72,82)(68,110,70,84)(73,119,103,89)(75,117,101,91)(77,123,107,93)(79,121,105,95), (1,47,39,77)(2,18,40,108)(3,45,37,79)(4,20,38,106)(5,120,68,30)(6,91,65,57)(7,118,66,32)(8,89,67,59)(9,107,99,17)(10,78,100,48)(11,105,97,19)(12,80,98,46)(13,111,103,21)(14,82,104,52)(15,109,101,23)(16,84,102,50)(22,44,112,74)(24,42,110,76)(25,121,115,35)(26,96,116,62)(27,123,113,33)(28,94,114,64)(29,125,119,69)(31,127,117,71)(34,54,124,88)(36,56,122,86)(41,83,75,49)(43,81,73,51)(53,93,87,63)(55,95,85,61)(58,128,92,72)(60,126,90,70), (1,13,9,73)(2,74,10,14)(3,15,11,75)(4,76,12,16)(5,36,70,96)(6,93,71,33)(7,34,72,94)(8,95,69,35)(17,81,77,21)(18,22,78,82)(19,83,79,23)(20,24,80,84)(25,89,85,29)(26,30,86,90)(27,91,87,31)(28,32,88,92)(37,101,97,41)(38,42,98,102)(39,103,99,43)(40,44,100,104)(45,109,105,49)(46,50,106,110)(47,111,107,51)(48,52,108,112)(53,117,113,57)(54,58,114,118)(55,119,115,59)(56,60,116,120)(61,125,121,67)(62,68,122,126)(63,127,123,65)(64,66,124,128)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,115,99,85)(2,56,100,26)(3,113,97,87)(4,54,98,28)(5,24,126,50)(6,81,127,111)(7,22,128,52)(8,83,125,109)(9,55,39,25)(10,116,40,86)(11,53,37,27)(12,114,38,88)(13,59,43,29)(14,120,44,90)(15,57,41,31)(16,118,42,92)(17,63,47,33)(18,124,48,94)(19,61,45,35)(20,122,46,96)(21,65,51,71)(23,67,49,69)(30,74,60,104)(32,76,58,102)(34,78,64,108)(36,80,62,106)(66,112,72,82)(68,110,70,84)(73,119,103,89)(75,117,101,91)(77,123,107,93)(79,121,105,95), (1,47,39,77)(2,18,40,108)(3,45,37,79)(4,20,38,106)(5,120,68,30)(6,91,65,57)(7,118,66,32)(8,89,67,59)(9,107,99,17)(10,78,100,48)(11,105,97,19)(12,80,98,46)(13,111,103,21)(14,82,104,52)(15,109,101,23)(16,84,102,50)(22,44,112,74)(24,42,110,76)(25,121,115,35)(26,96,116,62)(27,123,113,33)(28,94,114,64)(29,125,119,69)(31,127,117,71)(34,54,124,88)(36,56,122,86)(41,83,75,49)(43,81,73,51)(53,93,87,63)(55,95,85,61)(58,128,92,72)(60,126,90,70), (1,13,9,73)(2,74,10,14)(3,15,11,75)(4,76,12,16)(5,36,70,96)(6,93,71,33)(7,34,72,94)(8,95,69,35)(17,81,77,21)(18,22,78,82)(19,83,79,23)(20,24,80,84)(25,89,85,29)(26,30,86,90)(27,91,87,31)(28,32,88,92)(37,101,97,41)(38,42,98,102)(39,103,99,43)(40,44,100,104)(45,109,105,49)(46,50,106,110)(47,111,107,51)(48,52,108,112)(53,117,113,57)(54,58,114,118)(55,119,115,59)(56,60,116,120)(61,125,121,67)(62,68,122,126)(63,127,123,65)(64,66,124,128) );

G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,70),(6,71),(7,72),(8,69),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,127),(66,128),(67,125),(68,126)], [(1,99),(2,100),(3,97),(4,98),(5,126),(6,127),(7,128),(8,125),(9,39),(10,40),(11,37),(12,38),(13,43),(14,44),(15,41),(16,42),(17,47),(18,48),(19,45),(20,46),(21,51),(22,52),(23,49),(24,50),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,63),(34,64),(35,61),(36,62),(65,71),(66,72),(67,69),(68,70),(73,103),(74,104),(75,101),(76,102),(77,107),(78,108),(79,105),(80,106),(81,111),(82,112),(83,109),(84,110),(85,115),(86,116),(87,113),(88,114),(89,119),(90,120),(91,117),(92,118),(93,123),(94,124),(95,121),(96,122)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,115,99,85),(2,56,100,26),(3,113,97,87),(4,54,98,28),(5,24,126,50),(6,81,127,111),(7,22,128,52),(8,83,125,109),(9,55,39,25),(10,116,40,86),(11,53,37,27),(12,114,38,88),(13,59,43,29),(14,120,44,90),(15,57,41,31),(16,118,42,92),(17,63,47,33),(18,124,48,94),(19,61,45,35),(20,122,46,96),(21,65,51,71),(23,67,49,69),(30,74,60,104),(32,76,58,102),(34,78,64,108),(36,80,62,106),(66,112,72,82),(68,110,70,84),(73,119,103,89),(75,117,101,91),(77,123,107,93),(79,121,105,95)], [(1,47,39,77),(2,18,40,108),(3,45,37,79),(4,20,38,106),(5,120,68,30),(6,91,65,57),(7,118,66,32),(8,89,67,59),(9,107,99,17),(10,78,100,48),(11,105,97,19),(12,80,98,46),(13,111,103,21),(14,82,104,52),(15,109,101,23),(16,84,102,50),(22,44,112,74),(24,42,110,76),(25,121,115,35),(26,96,116,62),(27,123,113,33),(28,94,114,64),(29,125,119,69),(31,127,117,71),(34,54,124,88),(36,56,122,86),(41,83,75,49),(43,81,73,51),(53,93,87,63),(55,95,85,61),(58,128,92,72),(60,126,90,70)], [(1,13,9,73),(2,74,10,14),(3,15,11,75),(4,76,12,16),(5,36,70,96),(6,93,71,33),(7,34,72,94),(8,95,69,35),(17,81,77,21),(18,22,78,82),(19,83,79,23),(20,24,80,84),(25,89,85,29),(26,30,86,90),(27,91,87,31),(28,32,88,92),(37,101,97,41),(38,42,98,102),(39,103,99,43),(40,44,100,104),(45,109,105,49),(46,50,106,110),(47,111,107,51),(48,52,108,112),(53,117,113,57),(54,58,114,118),(55,119,115,59),(56,60,116,120),(61,125,121,67),(62,68,122,126),(63,127,123,65),(64,66,124,128)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim11111112244
type+++++++-+-
imageC1C2C2C2C2C2C2Q8C4○D42+ 1+42- 1+4
kernelC23.408C24C4×C4⋊C4C428C4C23.63C23C23.65C23C23.81C23C23.83C23C4⋊C4C2×C4C22C22
# reps123242241611

Matrix representation of C23.408C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
400000
040000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
040000
400000
003400
003200
000020
000002
,
010000
400000
003000
000300
000010
000004
,
020000
300000
002000
002300
000001
000010
,
010000
400000
001000
000100
000040
000004

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,3,3,0,0,0,0,4,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,2,2,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;

C23.408C24 in GAP, Magma, Sage, TeX

C_2^3._{408}C_2^4
% in TeX

G:=Group("C2^3.408C2^4");
// GroupNames label

G:=SmallGroup(128,1240);
// by ID

G=gap.SmallGroup(128,1240);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,723,268,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c,e^2=b,f^2=b*a=a*b,g^2=a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽